伊豆半島河津川で見られたアマゴの種苗放流の遺伝的痕跡

川嶋尚正*1・寄村隆司*2

アマゴの種苗放流が表現型と遺伝子型に及ぼす影響を調査した。伊豆半島の在来アマゴ群に於て個自的な表現型と遺伝子型がある。それらと由来が異なる種苗が連続的に放流されている河津川水系の荻ノ入川で、繁殖形質について分析を行ったところ、伊豆半島特有の表現型と異なる放流魚由来と思われる表現型が見られた。また、遺伝子の帰属性分析結果でも放流魚由来のクスターがあった。しかし、その影響の程度は小さく、稚魚放流の効果があまり大きくないことが示唆された。

キーワード：アマゴ・遺伝子・種苗放流・遺伝的痕跡

アマゴ Oncorhyncus masou ishikawae の稚魚や発眼期の放流は、種苗を容易に購入でき、短時間のうちにその流域の資源を増やすことができるというメリットがあるが、他の水域のアマゴを導入することは、その河川のアマゴの遺伝的特徴に影響を与え、最悪の場合、その特質が消減する危険性もある。アマゴの遺伝的特徴を保存して増殖するならば、対象とする河川から親魚獲捕を捕まえ成熟するために、遺伝的特徴に配慮した交配を行い、種苗を得なければならない。一方、資源管理による増殖は、その河川に生息する親魚の繁殖力に従って、遺伝的特徴を保存されるが、資源が小さくなった場合も河川では資源の回復までに非常に長い年数がかかる。さらに、密漁や漁獲体長を制限するために釣り人の監視や関係者の合意形成など多くの困難がある。

このため現在では、ほとんどの河川で種苗放流と資源管理の併用により最大の効果を上げるような方策がとられる。ただ、単に資源の回復を図るだけでなく、更に魚の特徴を保存するため、遺伝的特徴の保存については考慮される。

本研究では、種苗放流による遺伝子の入れ替えを確認するため、種苗放流による資源回復が行われている河川で、生息するアマゴの表現型と遺伝子型について調査を行い、種苗放流の遺伝的痕跡を検討した。

図1：調査河川の位置

材料及び方法

調査対象は伊豆半島南部の賀茂郡河津町にある河津川水系の支流である荻ノ入川（以下ODNとする）である。

2015年1月30日受理
静岡県水産技術研究所(本所)業績第1158号
*漁業部水産振興課
**水産技術研究所浜名湖分場
名称と場所は在来群の保護のため、詳細は示されず、記号のみで表した。ここに生息するアマゴは、川崎さんが、すでに在来群であることを明らかにしている群である。OKBは支流内の上流部で2つの中流部に別れているが、両流間に明瞭な障壁はなく、支流間の移動は可能と考えられるため魚を集めて採集した。さらに、放流に使用されている稚魚を産卵している魚類の魚（以下REARとする）についても調査した。

図2 測定部位
P: バーマーク B: 黒色斑

アマゴの採捕はエレクトリックショッカーを用いてランダムに行った。浮上した魚はすべて採捕したが、OGNでは獲魚による放流が主であるため、以下の通り放流世代と思われる魚体は除いた。外見は天然魚のようである。静岡県でのアマゴの一般的な成長を見込んで尾叉長11cm以下の獲魚と思われる魚や、それ以上の大きさでも、各種の先端が偽つまみが、体色が薄い場合は放流魚の可能性が高いとして除いた。採捕したアマゴは小型のプラスチック製の水槽に入れ、側面から写真撮影をした後に、腺体を切出し、その部分に放流した。切出した腺体は、99.5%のエタノールに入れ、その後数日にエタノール液を入れ替え、完全に脱水した後常温で保存した。REARについては天然魚と同様に写真撮影して体長の採取を行った。後日、採取した画像を用いてbaarマークの数とその上方にある大きな黒色斑の数を計数した（図2）。

図3 バーマークと黒色斑の関係
P: バーマーク B: 黒色斑
凡例は全測定個体数に対する割合で示す

採取した腺体については囲DNAの抽出後、5座のマイクログレイト領域について増幅し、フラグメント解析を行った。抽出からアレルのサイジングまでは川崎のとおりとした。得られたアレルについて帰属性解析を行ったが、解析には帰属性解析ソフトSTRUCTURE2.3を使用した。

結果
調査は2006年8月10日から2007年10月3日に行い、表現型については380尾、遺伝子型については220尾について分析を行った（表1）。

表1 分析に供したサンプルの状況

<table>
<thead>
<tr>
<th>離島名</th>
<th>放流名（記号）</th>
<th>調査数</th>
<th>表現型</th>
<th>遺伝子型</th>
<th>水深（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>荒尾川</td>
<td>ASW</td>
<td>31</td>
<td>123～168</td>
<td>123～187</td>
<td>31</td>
</tr>
<tr>
<td>荒尾川</td>
<td>KRR</td>
<td>34</td>
<td>123～168</td>
<td>123～174</td>
<td>32</td>
</tr>
<tr>
<td>河津川</td>
<td>SGR</td>
<td>108</td>
<td>123～168</td>
<td>123～170</td>
<td>32</td>
</tr>
<tr>
<td>河津川</td>
<td>OGN</td>
<td>32</td>
<td>123～199</td>
<td>123～176</td>
<td>32</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>384</td>
<td>123～174</td>
<td>123～174</td>
<td>32</td>
</tr>
</tbody>
</table>

表現型について
バーマーク数と黑色斑数の関係を図示すると（図3）。3つの比較河川では黒色斑を持つ個体の割合が高かった。狩野川水系のASWでは黑色斑を持たない個体がわずかであり、多くは3～9個の範囲で見られ、4～7個を中心に分布していた。河津川水系のKRRでは3～12個の範囲で見られ、5～7個を中心に分布していた。SGRでも1～10個の範囲で見られ、4～6個を中心に分布された。REARでは、黒色斑を持たない個体の割合が31.5%と高く、あっても3個以下であった。バーマーク数はASWでは8～11個、OKRRでは7～12個、SGRでは6～10個、REARでも6～10個の範囲で見られた。調査河川であるOGNではバーマーク数は7～11個という河川に比べ少ななかったが、黒色斑では0～8個と範囲が広かった。全体的には黑色斑を持たない個体の割合が41.9%であった。

遺伝子型について
5座の遺伝子型についての分析から（表2）には、アレルの平均出現数は比較河川の在来群は2.2～2.4、REARは2.0であった。放流の行われているOGNでは2.0であった。また、Allele richnessは、在来群は2.2～2.3、REARは2.0であり、放流の行われているOGNでは2.2%であった。

STRUCTUREによる帰属性解析結果では、AKKを最大にするKの値は3となり、3つのクラスターが妥当とされた。比較河川では大きく2つのクラスターに分けられ、河津川水系のSGRはクラスター1が多く、OKRRはクラスター0が2群に分かれている。また、狩野川水系のASWはクラスター2が中心の組成になっていった。一方、REAR
表2 遺伝的特性値

<table>
<thead>
<tr>
<th></th>
<th>ASZ</th>
<th>OKBB</th>
<th>山川</th>
<th>OGN</th>
<th>REAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>オリジナル</td>
<td>2.4</td>
<td>2.2</td>
<td>2.4</td>
<td>2.4</td>
<td>2.6</td>
</tr>
</tbody>
</table>

図4 基因型解析結果
A S Z W : 牧野川水系在来群
O K B B , S G J R : 河津川水系在来群
O G N : 河津川水系人川群
R E A R : 養殖群

考察

伊豆半島の在来アマゴはどの河川でも丸いマークを持つ、黑色斑があるなど表現型は一様に類似し、大井川や高知川のそれに比べ大きく異なっていることが明らかになっている。また、遺伝的にも表現型と同様に伊豆半島の各河川は大井川とは異なることがわかった。

上記から、比較河川の在来群はともに伊豆半島の群であり、多くの黑色斑を持ち、遺伝的にも類似している。
一方、放流に使われている種苗の親魚の由来は不明だが、黑色斑を持つ個体は少なく、帰帰性解析の結果から、両者は区別ができることが推定される。

OGNは伊豆半島の河川であり、本来の表現型や遺伝子型は他の在来群と同じはずである。すなわち、クラスター1、2は比較河川である伊豆半島の在来群で見られるので、OGNが本来持っているクラスターも1または2と推測される。クラスター3は伊豆半島には見られない。このことから、放流群とは区別が可能なので、OGNはクラスター3が入り込んでいることと比較河川に比べ黒色斑をもたない個体が多いという点で放流魚由来の遺伝子が流されていることが推測される。

OGNの今回のサンプルには放流世代のものは含まず、天然で生まれたと思われる個体のみを対象としたが、遺伝子型や表現型に伊豆半島では見られない形質が現れたことは、再生産の過程で放流魚とその交雑が起こっているものと判断される。このように、表現型や遺伝子型の異なる群を放流し、世代を超えてその影響を可視化することができたと考える。

しかし、長期間にわたり放流が繰り返し行われているにもかかわらず、在来群の表現型がほぼ半数の個体に残っていることや、帰帰性解析の結果で、混入した外来魚の遺伝子が少ないことは、放流魚が稚魚で行われているため、その場に定着しないことや、放流魚が釣られやすいことにより、再生産に参加する個体が少なくなっていると考えられ、稚魚放流による増殖を考えたときに放流手法や資源管理のあり方に改善の余地が残されていることも推測された。

本研究を進めるに当たって、現地との調整など多大な配慮を賜った河津川非出資養殖業協同組合加藤四郎組合長、野中功元監事に深く感謝します。

文献

1) 川崎浩正(1988): アマゴの発眼期による放流効果。
静岡県水産試験場研究報告, 23, 13–25。
2) 川崎浩正(1983): 静岡県でのアマゴの河川放流と放流魚の成長。
静岡県水産試験場研究報告, 18, 15–23。
3) 川崎浩正(2014): 静岡県の在来アマゴに見られた地域変異。日本生物地理学会報, 69, 13–23。
5) 立川五·本庄鉄夫(1974): ヒル河川放流。養鰍の研究（全国湖沼河川養殖研究会養鰍部会編）。総合書, 東京, 123–137。
Genetic trace of amago fry release in the Kawazu River, Izu Peninsula

Indigenous amago, *Oncorhynchus masou ishikawai* inhabiting the Izu Peninsula have a characteristic phenotype and genotype. In the Oginoiri River, part of the Kawazu River system, fish that originate from other countries are continuously released. We studied the phenotype and genotype of amago. Black blotches on the upper side of the parr-marks revealed that these fish differ from those in the Izu Peninsula. In addition, there were clusters of released fish, as determined by an assignment test using STRUCTURE. However, the increase in resources used by released fry was small. Thus, released fry have only a minor effect.