Heterocapsa circularisquamaがアサリ成員のろ水率に与える影響

今中 園実*。

有害プランクトンHeterocapsa circularisquamaがアサリ成員のろ水率に与える影響を検討した。アサリを異なる密度のH.circularisquamaに暴露させ、同時に添加した珪藻の摂餌量から、間接的にろ水率の低下を推定した。アサリのろ水率はH.circularisquama密度40cells/mLで対照区より有意に低下し、200cells/mLで対照区の50%以下に低下した。H.circularisquama密度400cells/mL以上では、対照区の20%以下に低下した。本研究は、天然海域でH.circularisquamaがアサリ成員に与える影響を推定する一助となると考えられる。

キーワード：Heterocapsa circularisquama, アサリ, ろ水率

は じ め に

涸猟微生物の一種Heterocapsa circularisquamaは、貝類のみを特異的にへい死させる有害プランクトンであり1), 西日本沿岸で二枚貝産業に大きな被害を与えている2)。浜名湖でも2003年3), 2007年4)に赤潮を形成し、アサリ・カキ漁業に大きな被害をもたらした。特にアサリRuditapes philippinarumは浜名湖において漁獲量の93%（平均20年）5)を占める重要な水産物であり、H.circularisquamaがアサリに与える影響を解明し、漁業被害の軽減につながる知見を蓄積することは、浜名湖の漁業にとって重要である。

H.circularisquamaが二枚貝に与える影響を解明するには、定量的な指標が必要である。マガキCrassostrea gigas6)やムラサキガイMytilus galloprovincialis7)では、H.circularisquamaの影響によるろ水率の低下が定量的に実証されている。その機構は詳細には解明されていないが、有毒成分により二枚貝の腎組織を損傷させると推定されており8), ろ水率の低下は二枚貝の影響を評価する指標として利用できると考えられる。アサリについては、稚貝のろ水率低下が報告されているが9), 成員については未だ知見がない。本研究ではH.circularisquamaがアサリ成員のろ水率に与える影響について検討し、若干の知見を得たので報告する。

本文に先立ち、実験に供したH.circularisquama分離培養株を御提供いただいた（独）水産総合研究センター西海区水産研究所松山幸彦博士、Skeletonema sp.分離培養株を御提供いただいた静岡県水産技術研究所利用普及部松浦広氏に謝意を表する。

材料および方法

1. 材料

H.circularisquamaは、（独）水産研究センター瀬戸内海区水産研究所により2004年秋に浜名湖湖水から分離され、浜名湖分場で従来培養した培養株を用いた。定常期の細胞を、10L容のボリカーボネート製容器に作成したK培地10)4Lに植え替え、再び定常期となるまで10日間培養した。培養時の温度・光強度は20±0.4℃、115μmolm⁻²s⁻¹とし

アサリ（殻長34.0±3.67mm）は、2008年9月上旬に浜名湖分場場地先の砂浜で採取したものを用いた。底面に粒径0.063～1.00mmの砂を敷き、海水を満たした60L容水槽に収容し、底面を装置を用いた循環ろ過により14日間予備飼育を行った。予備飼育中の飼料は、浜名湖沿岸の表層水に硝酸塩、リン酸塩、珪藻塩を加えて増殖させた珪藻を用いた。主な種類はRhizosolenia sp., Thalassiosira sp., Thalassionema sp., Nitzschia sp.であった。

さらに、ろ水率測定の指標として、珪藻Skeletonema sp.を使用した。2008年8月に焼津市沿岸の表層水から単離培養された培養株を、F地11)100μmolm⁻²s⁻¹で定常期まで培養した。2010年3月12日受理
静岡県水産技術研究所（浜名湖分場）魚病150号
’静岡県水産技術研究所浜名湖分場
2. ろ水率の測定

アサリろ水率の測定は、Skeletonema sp.の密度変化から間接的推定する方法を用いた[13]。13.5Lの水槽にGF/Cろ過海水8Lを入れ、アサリ5個体を収容し、Skeletonema sp.細胞を1,000～20,800cells/mL添加したものを1実験区とした。H.circularisquama細胞を、実験区ごとに所定の密度となるよう添加した。各実験区は、20mLとし、流量約5.0mL/分でエアレーションを行った。上記のエア流量によるH.circularisquama細胞への影響を事前に確認した結果、変形・破壊率は1%未満であった。

ろ水率の測定は、アサリに暴露させるH.circularisquamaの密度を3段階に変えて行った。

実験①：H.circularisquama密度0,100,500,1000,5000cell/s/mLの5実験区で、アサリ成餌に影響を与える密度を決定した。

実験②：H.circularisquama密度0,20,40,60,80cells/mLの5実験区で、アサリ成餌に影響を与えるH.circularisquamaの最少密度を推定した。

実験③：H.circularisquama密度0,100,200,300,400cells/mLの5実験区で、アサリ成餌のろ水率が顕著に低下する細胞密度を推定した。

実験①～③は、それぞれ3回行った。

実験は、対照区（0cell/mL）においてSkeletonema sp.がある細胞が十分に残存する3時間後まで行った。1時間ごとに水槽内の海水を5mL採取し、光学顕微鏡下でSkeletonema sp.細胞数を直接計数した。ろ水率は次式に計算したものである。

アサリ1個体あたりのろ水率（L/h）=1

\[\ln \left(\frac{F_i}{F} \right) \cdot M \]

F、F_i：開始時およびt時間後のSkeletonema sp.細胞数(cells/mL)、M：水槽の水量(L)、t：時間(h)、N：アサリの個体数

各実験ごとに、一元配置分散分析およびDunnett法（いずれもp<0.05）で、実験区間、および対照区との差を検定した。

図1 アサリを異なる密度のH.circularisquamaに暴露させたときのSkeletonema sp.密度の経時変化

H.circularisquama密度(cells/mL)

○：0；■：100；●：500；□：1000；▲：5000
平均値±標準誤差(n=3), バーは標準誤差

Dunnett法により対照区と各実験区との差を検討すると、実験①では全ての実験区において、対照区よりもる水率が低下した。特に500cells/mL以上の実験区でろ水率の低下が激しく、対照区のろ水率0.79L/hに対し、0.13～0.06 L/h（7.6～16.5%）に低下した（図2）。実験②では、H.circularisquama密度40 cells/mL以上の実験区で、対照区よりもる水率が低下した（図3）。実験③では、全ての実験区において対照区よりもる水率が低下した。H.circularisquama密度200cells/mLで、対照区（0.82L/h）の50%以下である0.29L/hに低下した。

実験開始から3時間後までにおいて、Skeletonema sp.密度の経時変化を図1に示した。各実験区のSkeletonema sp.密度は、3時間後まで経時的に減少した。密度の減少は実験②、③においても同様の傾向であった。

3時間後に実験区のる水率から、H.circularisquama密度とる水率の関係を検討した（図2～4）。一元配置分散分析の結果、実験①～③の全てで有意差がみられた。

図2 H.circularisquama密度とアサリろ水率の関係

H.circularisquama密度0～5,000cells/mL
平均値±標準誤差(n=3), バーは標準誤差
Heterocapsa circularisquamaがアサリ成員のろ水率に与える影響

図3 H.circularisquama密度とアサリろ水率の関係
H.circularisquama密度0〜80cells/mL
平均値±標準偏差(n=3)，バーは標準偏差

図4 H.circularisquama密度とアサリろ水率の関係
H.circularisquama密度0〜400cells/mL
平均値±標準偏差(n=3)，バーは標準偏差

アサリ成員のろ水率は0.6〜1.5 L/hと報告されている1）。対照区のアサリろ水率は0.75〜0.82 L/hでこの範囲内であり，実験区のろ水率低下は，H.circularisquamaによるろ水運動の阻害に起因すると考えることができる。本実験では，アサリ成員のろ水率はH.circularisquama密度40cells/mLで対照区より有意に低下し，200cells/mLで対照区の約50%になった。H.circularisquama密度400cells/mL以上ではろ水率が20%以下に低下し，アサリはほとんど摂餌を行うことができないと考えられた。

H.circularisquamaが海域で赤潮を形成する密度は700〜1,000cells/mL以上1）とされているが，本実験ではH.circularisquama密度40cells/mLでも対照区より有意にろ水率が低下しており，赤潮形成の傾向が示され，低い密度でも，アサリ成員の生理・生態に影響を及ぼしていると推察される。

H.circularisquamaがアサリ稚貝（6.2±1.2mm）のろ水率に与える影響は松山1）により報告されている。稚貝では，50cells/mLでろ水率が対照区の40%に低下するとされており，アサリ成員は稚貝よろH.circularisquamaによるろ水率の低下を起こしにくいと考えられた。また，マガキおよびムラサキガイでは，H.circularisquama1,000cells/mLで発生させると，ろ水率はそれぞれ対照区の1.5%，20%に低下する1）。本実験では，同密度のH.circularisquamaで発生させたとき，アサリ成員のろ水率は対照区の11.4%であり，アサリはマガキやムラサキガイよろH.circularisquamaによるろ水率の低下が起こりにくいと考えられた。アサリは高密度のH.circularisquamaで発生させても，アサリやマガキ等数種の二枚貝と比較し，へい死に至るまでの時間が長い1）30）ことからも，H.circularisquamaへの耐性が比較的強いことが推察される。

本実験で用いたH.circularisquamaは1株のみであり，株の違いによる影響の差は今後の課題である。本研究の結果を実際の海域で出現密度と比較することで，アサリ成員に与える影響の強さを推定する一助となると考えられる。

文献
1）松山幸彦（2003）：有害藻類水産Heterocapsa circularisquamaに関する生理生態学的研究-1 H.circularisquama赤潮の発生および分布拡大機構に影響する環境要因等の解明，水産総合研究センター研究報告，7，24-105。
2）吉田雄一・宮本政秀（1995）：1994年に樋浦湾に発生したHeterocapsa circularisquama赤潮の消長と日周変化について，熊本水産総合研研センター研究報告，3，31-35。
3）尊田佳子・木村仁美（2001）：2000年三河湾におけるHeterocapsa circularisquama赤潮の発生状況，愛知県水産試験場研究報告，8，1-6。
4）佐藤博之・山本千裕・寺井千尋（2005）：福岡におけるHeterocapsa circularisquama赤潮発生年の海域環境について，福岡県水産技術センター研究報告，15，7-15。
5）松浦玲子・鷺山裕史（2005）：2003年の浜名湖におけるHeterocapsa circularisquamaの出現，静岡県水産試験場研究報告，40，53-59。
6）松浦玲子（2007）：平成19年に発生したヘテロカプサ赤潮について，はまな（静岡県水産技術研究所浜名湖研究報告）520，6-7。
7) 花井孝之（2009）：平成20年の浜名湖漁獲統計，浜名（静岡県水産技術研究所浜名湖分場），525，12-14.
9) 松山幸彦（2003）：有害藻類Heterocapsa circularisquamaに関する生理生態学的研究 - II H.circularisquamaの毒性および貝類飼育の解明，水産総合研究センター研究報告，9, 13-117.
13) 千葉健治・大島泰雄（1957）：アサリを主とする海産二枚貝の濁水・摂餌に及ぼす濁りの影響，日本水産学会誌，23(7-8)，348-353.
14) 山脇稔文・坂口昌生・松田正彦・岩永俊介・岩沢光誠・松岡数充（2005）：大村湾産有害藻類Heterocapsa circularisquamaの二枚貝への影響と増殖特性，日本水産学会誌，71(5)，746-754.
Effect of harmful dinoflagellate *Heterocapsa circularisquama* on the clearance rate of adult short neck clam

Sonomi Imanaka

Abstract Effect of the harmful dinoflagellate, *Heterocapsa circularisquama* on the clearance rate of adult short neck clam, *Ruditapes philippinarum* was examined. Short neck clams were exposed to various density of *H.circularisquama*, and clearance rate was measured indirectly from the decrease of diatom cell density caused by filtration of clams. Clearance rate of short neck clams decreased significantly of the control in 40cells/ml of *H.circularisquama*. In 200cells/ml of *H.circularisquama*, clearance rate decreased less than 50% of the control, and in more than 400cells/ml, clearance rate decreased less than 15%. This is the first report of the effect of *H.circularisquama* on the clearance rate of adult short neck clam.

Key words: *Heterocapsa circularisquama*, *Ruditapes philippinarum*, clearance rate